<u>U(path)</u> -8**7**3 lb

-860 lb

-775 lb

-6,675 lb

-873 lb

-873 lb

-873 lb

-860 lb

-860 lb

-873 lb

-6,675 lb

22,262 lb

-6,675 lb



mwfrs plan notes 1. The main wind force resisting system (MWFRS) consists of two components:

2. This home is continuously sheathed with wood panel sheathing, but not all sheathed areas have to be constructed as shear panels - only the wall lengths identified need to conform to the special shear panel blocking and nailing 3. An uplift load path (ULP) may or may not fall within a shear panel. ULPs occur

(wood members joined with metal construction connector

connectors at each truss bearing and assumes trusses spaced at 24" on center,

• the most leeward edge of the roof diaphragm will be in compression and the

(1) H3 hurricane tie  $154 \times -290 \text{ lb}$  -22,262 lb

uplift load paths are used to tie the roof diaphragm and each story to the foundation;

spread the load as evenly as practicable (paths are typically located on either side of

each path is designed to resist a portion of the design value and are distributed to

(1) MTS30 twist strap

(1) DSP stud plate tie

SB5/8×24 anchor bolts\*

ULP-2: from roof through the first story at flush entry and thus to the foundation

ULP-3: from roof through the first story and knee wall and thus to the foundation

(1) MTS30 twist strap

maximum anchor bolt spacing is 72" on-center when using a double sill plate, and

6 × -860 5,160 lb 22,611 lb

6,975 lb

48" on-center when using a single sill plate; the uplift load path is allowed to fall

9×-775 6,975 lb

-873 lb 12×-873 10,476 lb 17,451 lb

ULP-1: from roof through the first story and thus to the foundation

wall top plates to wall stud (1) TSP stud plate tie

: the controlling value for ULP-1 is U(path) = -775 lb

wall top plates to wall stud (1) TSP stud plate tie

wall stud to sole/sill plates (1) TSP stud plate tie

wall top plates to wall stud (1) TSP stud plate tie

rim joist to knee wall stud (1) MTS30 twist strap

anywhere within the anchor bolt spacing span

-860 lb

knee wall stud to sill plates (1) TSP stud plate tie

sill plates to foundation SB5/8×24 anchor bolt\*

the controlling value for *ULP-3* is U(path) = -860 lb

sill plates to foundation SB5/8x24 anchor bolts\*

the controlling value for ULP-2 is U(path) = -873 lb

this is desirable because:

uplift load path bracing method

wall stud to rim joist

rim joist to sill plates

wall stud to rim joist

4,575 lb

2,745 lb

6,405 lb

8,235 lb

2,334 lb

7,200 lb

10,800 lb

8,235 lb

2,745 lb

2,745 lb

7,200 lb

2,334 lb

2,334 lb

7,200 lb

total = 21,960 lb

total = 24,224 lb

total = 16,470 lb

total = 19,068 lb

sill plates to foundation

within opaque areas of the exterior wall - they do not fall within openings, but they often use a king stud on either side of an opening.

for simplicity the story shears which result from the greatest evaluated total (see design parameters and evaluations, shown in red) are applied to the structure in each direction lateral load path bracing methods WSP panels: wood structural panels over framing with a gypsum wall board interior maximum height-to-width panel aspect ratio is 3.5:1 APA structural 1 grade, 7/16" sheathing on SPF#2 studs at 16" on-center, all panel connectors along this edge will not contribute. edges blocked, fastened to studs with 3d common nails spaced 3" on-center at • connections at hip trusses and jacks may not fully contribute panel edges and 6" on-center in the field • gypsum wall board, 5/8" panels on SPF#2 studs at 16" on-center, all panel edges <u>wall length</u> <u>connection</u> blocked, fastened to studs with type W or S #6x1-1/4 screws at 4" on-center at 309 ft panel edges and blocking wood structural panel shear capacity, Yw = 550 lb gypsum wall board panel shear capacity, Vg = 160 lb • specific gravity adjustment factor for spruce-pine-fir studs, g = 0.92 wind design increase factor, w = 1.4 • cripple design adjustment factor, c = 0.85 •  $V = (Vw + Vg)^*g^*w = 915 \text{ lb/ft [cripple walls: } Vc = V^*c = 778 \text{ lb/ft]}$ CIP panels: cast-in-place concrete wall sections 8" nominal thickness (min) panel shear capacity, V = 1,200 lb/ft lateral load path bracing, transverse directions 
 story
 V(design)
 line
 panel
 solution

 2
 21,202 lb
 A.2
 (1) M5M60
 5 x 915
 B.2 (1) MSM36 3 × 915 C.2 (1) MSM84 7 × 915 D.2 (3) MSM36 9×915 23,540 lb A.1 (1) MSM60  $5 \times 778$ B.1 (1) MSM36 3 × 778 C.1 (2) CIP36  $6 \times 1,200$ D.1 (3) CIP36  $9 \times 1,200$ lateral load path bracing, longitudinal directions 
 story
 V(design)
 line
 solution

 2
 14,581 lb
 1.2
 (3) MSM36
 2.2 (1) MSM36 3 × 915 3.2 (1) MSM36 3×915 4.2 (1) MSM36 18,376 lb 1.1 (2) CIP36  $6 \times 1,200$ 2.1 (1) MSM36 3×778 3.1 (1) MSM36 3×778 6 × 1,200 4.1 (2) CIP36

main wind force resisting system: load path parameters and design

prescriptive braced panel design and selection per IBC 2009

note: trusses may not align with stud below truss to wall top plates (1) H3 hurricane tie (4) 8dx1-1/2 commons in truss (4) 8d×1-1/2 commons in plates wall top plates to wall stud (1) TSP stud-plate tie (9) 10d×1-1/2 commons in studs (9) 10d×1-1/2 commons in studs (6) 10d commons in plates (1) MTS30 twist strap (7) 10d×1-1/2 commons in stud (7) 10d×1-1/2 commons in rim joist place the (7) MTS30 nails within this area to minimize cross-grain tension in the rim

rim joist to sill plate

(1) DSP stud plate tie

SB5/8×24 anchor bolt

note: trusses may not align with stud below

truss to wall top plates

(4) 8d×1-1/2 commons in plates

9) 10d×1-1/2 commons in studs

wall top plates to wall stud

(1) TSP stud-plate ties

(6) 10d commons in plates

(1) H3 hurricane tie (4) 8d×1-1/2 commons in truss

(6) 10 commons in sill plate

(8) 10d×1-1/2 commons in rim joist

rim joist to sill plate 1) DSP stud plate ties 8) 10d×1-1/2 commons in rim joist (6) 10d commons in sill plate SB5/8×24 anchor bolt

truss to wall top plates

(4) 8d×1-1/2 commons in truss

(4) 8dx1-1/2 commons in plates

wall top plates to wall stud

(1) TSP stud-plate tie

(1) H3 hurricane tie

**ULP-1** elevation

truss to wall top plates (1) H3 hurricane tie (4) 8dx1-1/2 commons in truss (4) 8dx1-1/2 commons in plates wall top plates to wall stud (1) TSP stud-plate ties 9) 10d×1-1/2 commons in stud (6) 10d commons in plates wall stud to rim joist (1) MTS30 twist strap (7) 10d×1-1/2 commons in stud (7) 10d×1-1/2 commons in rim joist

(6) 10d commons in plates

─ SB5/8×24 anchor bolt

wall stud to rim joist (1) MTS30 twist strap (7) 10d×1-1/2 commons in stud (7) 10d×1-1/2 commons in rim joist place the (7) MTS30 nails within this area to minimize cross-grain tension in the rim rim joist to wall stud (1) MTS30 twist strap rim joist to wall stud (1) MTS30 twist strap 7) 10d×1-1/2 commons in stud (7) 10d×1-1/2 commons in rim joist wall stud to sill plate 1) TSP stud-plate tie 9) 10d×1-1/2 commons in stud

(7) 10d×1-1/2 commons in stud (7) 10d×1-1/2 commons in rim joist (1) TSP stud-plate tie (9) 10d×1-1/2 commons in stud (6) 10d×1-1/2 commons in plates SB5/8×24 anchor bolt

**ULP-3** elevation

- SB5/8x24 anchor bolt

**ULP-2** section

(1) TSP stud-plate tie

(6) 10d commons in plates

9) 10d×1-1/2 commons in studs

the ULP-2 wall stud to top plate connections are identical to those for ULP-1

**ULP-2** elevation

wall stud to sill plate

(1) TSP stud-plate tie

SB5/8×24 anchor bolt

(9) 10d×1-1/2 commons in studs

(6) 10d commons in plates

mwfrs plan

stud to rim joist (1) MTS30 twist strap 7) 10d×1-1/2 commons in stud (7) 10d×1-1/2 commons in rim joist **ULP-1** section story 2 (1st floor) lateral load path bracing plan

1/8" = 1'-0"

north north south south

story 1 (basement) lateral load path bracing plan

| 1/8" = 1'-0"

uplift load path details

**ULP-3** section

as indicated page 13 of 32

project #18010 contact: Robert Lackore robl@bourildesign.com 608-833-3400